Александр Петров (kindergod) wrote,
Александр Петров
kindergod

Что есть Истина?

По наводке Тимофея Ха - хоть и не математик я даже близко - вновь впечатлился любимой мной некогда геометрией Лобачевского

Здесь мы вынуждены обратиться к проблемам философским. Прежде всего, надо понять, что значит «истинна». Казалось бы, ясно: истинна — значит, соответствует реальному положению вещей. Как там, в реальном мире, одна параллельная прямая или много? А никак, потому что в реальном мире вообще нет прямых, как нет и других объектов геометрии. Геометрических шаров, например, в природе не бывает, а бывают лишь предметы, приближающиеся по форме к геометрическому шару; при этом арбуз в меньшей степени шар, чем волейбольный мяч, а мяч — в меньшей степени, чем биллиардный шар или шарик подшипника. С прямыми дело обстоит ещё сложнее: ведь прямая бесконечна, а все примеры, которые мы можем предъявить, будь то линия, начерченная на песке либо на бумаге, или натянутая нить, или граница между стеной и потолком, — все они демонстрируют нам (опять-таки, разумеется, приблизительно) лишь ограниченные, конечные участки прямых линий, т. е. то, что на языке современной геометрии называется отрезками. Да и отрезков в точном геометрическом смысле в природе не существует: самая тонкая нить имеет толщину, самая гладкая поверхность лишь приближается к идеально ровной, а под электронным микроскопом выглядит как рябь. Луч света и тот искривляется в реальном пространстве. Для формирования же представления о бесконечной прямой одного только наглядного способа недостаточно — требуется ещё и воображение. От зарождения геометрии прошли тысячелетия, пока люди осознали, что мы не можем непосредственно наблюдать точки, прямые, отрезки, плоскости, углы, шары и прочие геометрические объекты и потому предметом геометрии служит не реальный мир, а мир воображаемый, населённый этими идеальными геометрическими объектами, всего лишь похожий на мир реальный (по терминологии некоторых философских школ, являющийся отражением реального мира).

«Поверхности, линии, точки, как их определяет Геометрия, существуют только в нашем воображении», — писал в 1835 г. Лобачевский во вступлении к своему сочинению «Новые начала геометрии с полной теорией параллельных» (впервые оно было опубликовано в четырёх номерах «Учёных записок Казанского университета» за 1835, 1836, 1837 и 1838 гг.). Аксиомы геометрии как раз и уточняют свойства этих существующих в нашем воображении понятий. Значит ли это, что мы можем сформулировать какие угодно аксиомы? Нет, если мы хотим, чтобы геометрические понятия отражали наши представления о реальном физическом пространстве. Потому что, хотя точки, прямые, поверхности не существуют реально, некие физические объекты и явления, приводящие к этим понятиям, безусловно, существуют (если вообще признавать реальное существование окружающего нас мира). Поэтому вопрос надо ставить так: какая из аксиом, Евклида или Лобачевского, точнее описывает те представления о структуре реального физического пространства, которые отражаются в геометрических образах? Строгий ответ на это вопрос таков: неизвестно. Однако можно с уверенностью утверждать, что в доступных нашему наблюдению областях пространства евклидова геометрия соблюдается с высокой степенью точности. Так что, говоря о неизвестности, мы имеем в виду очень большие области пространства. Дело в том, что в геометрии Лобачевского отличие суммы углов треугольника от 180° тем больше, чем длиннее стороны этого треугольника; поэтому чем больше треугольник, тем больше надежды заметить данное отличие — и тем самым подтвердить на практике аксиому Лобачевского. Отсюда возникает мысль измерять треугольники с вершинами в звёздах (недаром упомянутый выше Швейкарт называл звёздной геометрию, впоследствии предложенную Лобачевским). Такими измерениями занимался сам казанский ректор («И он вгляделся пристальней в безоблачную высь...»), но точность измерительных приборов оказалась недостаточной, чтобы уловить отклонение суммы углов треугольника от суммы двух прямых углов, даже если таковое отклонение и существует.

Чтобы пояснить, как это может быть, что для меньших участков пространства действует одна геометрия, а для больших — другая, воспользуемся следующей аналогией. При составлении плана местности нет нужды учитывать шарообразность Земли — именно потому, что участок, план которого снимается, невелик. Поэтому, когда имеешь дело со сравнительно небольшими участками, разумно исходить из того, что Земля плоская, оттого это заблуждение так долго держалось. При составлении же карты России шарообразность Земли не брать в расчет нельзя, а при тонких расчётах приходится иметь в виду, что Земля есть эллипсоид (а точнее, геоид). При ружейной стрельбе можно проследить на карте местности траекторию пули, приложив линейку к двум точкам, отмечающим положение стрелка и положение цели. Но маршрут самолёта, совершающего дальний перелёт по кратчайшей линии, на плоской карте выглядит как дуга. Аналогично евклидова геометрия хорошо работает в малых масштабах, т. е. на доступных нам участках пространства. Мы не знаем, что происходит в масштабах очень больших. В рассказе Уэллса «История Платтнера» его герой Готфрид Платтнер проделывает некое фантастическое путешествие, после чего возвращается зеркально перевёрнутым. Уэллс объясняет это явление выходом в другой мир, в четвёртое измерение. Теоретические представления о возможной геометрической структуре Вселенной не исключают того, что путешествие, приводящее к зеркальному отражению путешественника, может быть совершено и без выхода из нашего трёхмерного мира.

(с) «Апология математики». Владимир Андреевич Успенский

чуть чуть напомнило книгу "Свет и Время

из нее моя любимая цитат во вконтакте - Преподаватели на опыте знают, что мало кто так тверд в убеждениях и так уверен в собственных познаниях, как их школьники. Студенты твердо знают то, о чем исследователи только осторожно догадываются. (ОДЦ РАГНАР НИЛЬСЕН)



http://vkontakte.ru/note18110942_10325231
Subscribe
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 0 comments